Baladron, J., Vitay, J., Fietzek, T., & Hamker, F. H. (2023). The contribution of the basal ganglia and cerebellum to motor learning: A neuro-computational approach. PLOS Computational Biology, 19(4).
Farahani, A., Vitay, J., & Hamker, F. H. (2022). Deep Neural Networks for Geometric Shape Deformation. In R. Bergmann, L. Malburg, S. C. Rodermund, & I. J. Timm (Eds.), KI 2022: Advances in Artificial Intelligence. Lecture Notes in Computer Science (Vols. 13404, pp. 90-95). Cham, Switzerland: Springer.
Fietzek, T., Dinkelbach, H. Ü., & Hamker, F. H. (2022). ANNarchy - iCub: An Interface for Easy Interaction between Neural Network Models and the iCub Robot. 2022 IEEE 9th International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA).
Krumm, D., Kuske, N., Neubert, M., Buder, J., Hamker, F., & Odenwald, S. (2021). Determining push-off forces in speed skating imitation drills. Sports Engineering Volume, 24, 25.
Larisch, R., Gönner, L., Teichmann, M., & Hamker, F. (2021). Sensory coding and contrast invariance emerge from the control of plastic inhibition over emergent selectivity. PLoS Computational Biology, 17(11).
Maith, O., Schwarz, A., & Hamker, F. (2021). Optimal attention tuning in a neuro-computational model of the visual cortex–basal ganglia–prefrontal cortex loop. Neural Networks, 142, 534-547.
Novin, S., Fallaha, A., Rashidib, S., Beuth, F., & Hamker, F. (2021). A neuro-computational model of visual attention with multiple attentional control sets. Vision Research, 189, 104-118.
Teichmann, M., Larisch, R., & Hamker, F. (2021). Performance of biologically grounded models of the early visual system on standard object recognition tasks. Neural Networks, 144, 210-228.